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Abstract 

Common fixed point theorems in complete metric spaces (X, d) are given for two or more multifunctions 
which satisfy polynomial inequalities using only the distance d, without using the Hausdorff metric. 
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Introduction 

The paper of B. Fisher [1] contains the following result: 

Theorem A. Let ( , )X d  be a complete metric space and  two mappings such that , :S T X X→

 
2 2( , ) ( , )( , )
( , ) ( , )
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for all x ,  from y X  which verify the condition ( , ) ( , ) 0d x Sx d y Ty+ ≠ , where 0 1 . c< <

Then  and T  have a common fixed point that is there exists S u X∈  such that u  and 
. 

Su=
u =Tu

Remark. The mappings  and T  which verify theorem A have the property: S
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Proof. Let us assume that . Based on condition (1) we have ( , ) 0d x Tx ≠
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from where, for , it results n →∞ ( , ) ( , )d x Tx c d x Tx≤  which is a contradiction since . 
Therefore d x , that is 

0 1c< <
( , ) 0Tx = x Tx= . Analogously we prove that x Sx= . 

In the following we will consider mappings, called multifunctions, defined on the metric space 
( , )X d  with values in , that is in the family of nonempty subsets of ( )P X X . 
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In [4] V. Popa has proved common fixed point theorems for multifunctions which verify 
rational inequalities, which contain the Hausdorff metric in their expressions and which 
generalize theorem A. 

In the present paper we will present other common fixed point theorems for two or more 
multifunctions without using the Hausdorff metric and which generalize not only theorem A but 
also the theorems obtained by V. Popa [4] for the case 2p m= . 

Common Fixed Point Theorems for Multifunctions 

Fixed point of the multifunction  is any element : ( , ) ( )T X d P X→ u X∈  with the property 
. We note u Tu∈ ( )F T  the set of fixed points of the multifunction T . 

Lemma 1. Let ( , )X d  be a metric space and  two multifunctions such that , : ( )S T X P X→
( )x X∀ ∈ ,  (or ) there exists ( )y Sx∀ ∈ y Tx∈ z Ty∈  (respectively z Sy∈ ) , the following 
inequality occurs: 

  (2) 2 2(1 ) ( , ) ( , ) ( , ) ( , ) 0m m m mc d y z d x y d y z c d x y− + − ≤

where , 0  and 1m ≥ 1c< < ( )F S φ≠ . Then ( )F T φ≠  and ( ) ( )F S F T= . 

Proof. Let , that is , it results that there exists ( )u F S∈ u Su∈ z Tu∈  and (2) becomes 

  2 2(1 ) ( , ) ( , ) ( , ) ( , ) 0m m m mc d u z d u u d u z c d u u− + − ≤

from where we get 2(1 ) ( , ) 0mc d u z− ≤ , that is ( , ) 0d u z = . It results z u=  and therefore u  
which implies 

Tu∈
( ) ( )F S F T⊂ . Analogously we prove that ( ) ( )F T F S⊂ . Therefore 

( ) ( )F S F T= . 

Let  with : ( )V X P X→ ( , )X d  a metric space. The following property will be used further: 
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Theorem 1. Let ( , )X d  be a complete metric space and  two multifunctions 
such that 

, : ( )S T X P X→
( )x X ( )∀ ∈ , y Sx∀ ∈  (or y Tx∈ ) there exists z Ty∈  (respectively ) inequality 

(2) occurs, where , . If one of the multifunctions , T  verifies condition (b) then 
 and T  have common fixed points and 

z Sy∈
1m ≥ 0 c< 1< S

S ( ) ( )F S F T= . 

Proof. Let 0x X∈  arbitrary fixed and 1 0x Sx∈ . Then there exists 2 1x Tx∈  such that 

 2 2
1 2 0 1 1 2 0 1(1 ) ( , ) ( , ) ( , ) ( , ) 0m m m mc d x x d x x d x x c d x x− + − ≤

2

. 

Then there exists 3x Sx∈  such that 

 2 2
2 3 1 2 2 3 1 2(1 ) ( , ) ( , ) ( , ) ( , ) 0m m m mc d x x d x x d x x c d x x− + − ≤ . 

Continuing this reasoning we obtain a sequence 

 0x , 1x , 2x , 3x , … , 1nx − , nx ,… 

with 2 1 2 2n nx Sx− −∈ , 2 2n n 1x Tx −∈  and which verifies the inequality 

 , ( . (3) 2 2
1 1 1 1(1 ) ( , ) ( , ) ( , ) ( , )m m m m

n n n n n n n nc d x x d x x d x x c d x x+ − + −− + − 0≤ ) 1n∀ ≥



62 Alexandru Petcu  
 

1−

The first member from inequality (3) is a second degree trinomial in the variable  
with the discriminant 

1( , )m
n nd x x +

 . 2 2 2 2
1 1( , ) 4(1 ) ( , ) (1 4 4 ) ( , ) 0m m m

n n n n n nd x x c c d x x c c d x x− −Δ = + − = + − >

Inequality (3) occurs if   is between the roots of the trinomial, that is 1( , )m
n nd x x +

 
2 2

1 1
1 1 4 4 1 1 4 4( , ) ( , ) ( ,

2(1 ) 2(1 )
m m m

n n n n n n
c c c cd x x d x x d x x
c c− +

− − + − − + + −
≤ ≤

− − 1 )− . 

We note 

 
21 1 4 4

2(1 )
m c ck

c
− + + −

=
−

. 

A simple calculation shows that  and since  it results 1k < 1( , ) 0n nd x x + ≥

 , 1 10 ( , ) ( ,m m m
n n n nd x x k d x x+ −≤ ≤ )

that is , , from where we deduce 1 1( , ) ( , )n n n nd x x kd x x+ −≤ ( ) 1n∀ ≥

 , (1 0( , ) ( , )n
n nd x x k d x x+ ≤ 1 ) 1n∀ ≥ . 

A routine calculation leads to 

 0 1( , ) ( , )
1

n

n n p
kd x x d x x

k+ ≤
−

, , ∗∈ Npn,

which shows that  it is a Cauchy sequence and since the space 0( )n nx ≥ X  is complete it results 
that  is convergent. Let , u0( )n nx ≥ lim nn

u x
→∞

= X∈ .  

We have 2 1 2 2n nx Sx− ∈ −  and assuming that  verifies (b) it results that uS Su∈ . 

With lemma 1 we deduce that u  and Tu∈ ( ) ( )F S F T= . 

Corollary. Theorem 1 generalizes theorem A of B. Fisher [1]. 

Proof. We assume that the conditions of theorem A are true. Eliminating the denominator, (1) 
becomes 

 . (4) 2 2( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 0d Sx Ty d x Tx d Sx Ty d y Ty c d x Sx c d y Ty+ − − ≤

We observe that (4) occurs for any ,x y X∈ , even if ( , ) ( , ) 0d x Sx d y Ty+ = . We consider 
 and note . Inequality (4) becomes y Sx= z Ty=

 , 2 2(1 ) ( , ) ( , ) ( , ) ( , ) 0c d y z d x y d y z c d x y− + − ≤

which is the same with (2) for  and . 1m = , :S T X X→

Based on this remark occurs (a) which covers (b) in this particular case. Theorem A is this way 
proven. 

In the particular case  from theorem 1 it results : ( )S T X P X= →

Theorem 2. Let ( , )X d  be a complete metric space and  a multifunction such 
that (

: ( )T X P X→
)x X∀ ∈ , , there exists ( x)y T∀ ∈ z Ty∈  with the property 
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≤ , 2 2(1 ) ( , ) ( , ) ( , ) ( , ) 0m m m mc d y z d x y d y z c d x y− + −

where , 0 . Then  has a fixed point. 1m ≥ 1c< < T

Theorem 3. Let ( , )X d
)

 be a complete metric space and  a sequence of multifunctions 
 such that for any  occurs the property 

1( )n nT ≥

( ): (nT X P X→ 2n ≥ x X∀ ∈ , 1( )y T x∀ ∈  (or ), 
there exists  (respectively ) which verify the condition 

ny T x∈

n yz T∈ 1z T∈ y

 , 2 2(1 ) ( , ) ( , ) ( , ) ( , ) 0m m m mc d y z d x y d y z c d x y− + − ≤

where , 0 . If one of the multifunctions  verifies (b) then the sequence  has 
common fixed points and 

1m ≥ 1c< < nT 1( )n nT ≥

1( ) ( )nF T F T= , ( ) 2n∀ ≥ . 

Theorem 3 results from theorem 1 and lemma 1. 

Other Consequences of Theorem 1 

In this section we will deduce theorems 2, 3 and 5 from [4] (V. Popa) for the particular case 
2p m= , like a consequence of theorem 1 from this paper. 

Let ( , )X d  be a metric space,  the family of nonempty subsets, closed and bounded 
from 

( )clbP X
X  and the Hausdorff-Pompeiu metric 

 { }( , ) max sup ( , ),sup ( , )
a A b B

H A B d a B d b A
∈ ∈

=  

with , where ( , ) inf ( , )
b B

d a B d a b
∈

= , (clbA B P X )∈ . We also note 

 { }( , ) sup ( , ) : ,A B d a b a A b Bδ = ∈ ∈ . 

Particularizing the well known result (lemma 1 (V) [5]) which says that if  and 
, , then for any  there exists b

, ( )clbA B P X∈
R∈k 1k > a A∈ B∈  such that d a( , ) (b kH , )A B≤ , we obtain 

Lemma 2. Let  and the multifunctions . Then for any 1k > , : ( )clbS T X P X→ x X∈  and any 
 (or ) there exists  (respectively y Sx∈ y∈Tx z Ty∈ z Sy∈ ) such that 

  ( , ) ( , )d y z kH Sx Ty≤ . 

Theorem 4 (Theorem 2 [4]). Let ( , )X d  be a complete metric space and  
two multifunctions such that 

1 2, : ( )clbT T X P X→

 
2 2

1 2
1 2

1 2

( , ) ( , )( , )
( , ) ( , )

m m
m

m m

d x T x d y T yH T x T y c
x T x y T yδ δ

+
≤

+
 (5) 

for any x ,  from y X  for which 

 1 2( , ) ( , ) 0m mx T x y T yδ δ+ ≠ , (6) 

where , 0 . Then  and  have common fixed points and 1m ≥ 1c< < 1T 2T 1 2( ) ( )F T F T= . 

Proof. Eliminating the denominator, (5) becomes 

 ( ) ( )2 2
1 2 1 2 1 2( , ) ( , ) ( , ) ( , ) ( , )m m m m mH T x T y x T x y T y c d x T x d y T yδ δ+ ≤ +  (7) 

which occurs even if condition (6) is not satisfied. 
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Inequality (7) is valid for any x ,  from y X  and in particular for 1y T x∈ . 

Let 
1

1 mk c
−

< < . For x X∈ ,  with lemma 2 it results that there exists  such that 1y T x∈ 2z T y∈

 1 2( , ) ( , )d y z kH T x T y≤  

and from here we have 

 ( ) ( )1 2 1 2 1 2( , ) ( , ) ( , ) ( , ) ( , ) ( , )m m m m m m md y z x T x y T y k H T x T y x T x y T yδ δ δ δ+ ≤ +  

and now with (7) we obtain 

 ( ) ( )2 2
1 2 1( , ) ( , ) ( , ) ( , ) ( , )m m m m m md y z x T x y T y ck d x T x d y T yδ δ+ ≤ + 2  

or even more 

 ( ) ( )2 2( , ) ( , ) ( , ) ( , ) ( , )m m m m m md y z d x y d y z ck d x y d y z+ ≤ + , 

from where it results that ( )x X∀ ∈ , 1( )y T x∀ ∈ , there exists 2z T y∈  such that 

 2 2(1 ) ( , ) ( , ) ( , ) ( , ) 0m m m m m mck d y z d x y d y z ck d x y− + − ≤ , 

where , 0 , condition which has the form of inequality (2). 1m ≥ 1mck< <

We prove now that  verifies condition (b). 1T

Let  be a convergent sequence from 0( )n nx ≥ X  with lim nn
x x X

→∞
= ∈  and 

 2 1 1 2 2n nx T x− −∈ , 2 2 2n n 1x T x −∈ . 

We have 

 1 2 1 2 2 1( , ) ( ,n nd T x x H T x T x )−≤  

from where with (7) we obtain 

 ( ) ( )2 2
1 2 1 2 1 2 2 1 1 2 1 2 2 1( , ) ( , ) ( , ) ( , ) ( , )m m m m m

n n n nd T x x x T x x T x c d x T x d x T xδ δ − − − −+ ≤ + n  

or more 

 ( ) ( )2 2
1 2 1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , ) ( , )m m m m m

n n nd T x x d x T x d x x c d x T x d x x− −+ ≤ + n n  

from where, for , it results n →∞ 1 1( , ) ( , )d T x x c d x T x≤ , that is 1( , ) 0d T x x = . Because  it is 
a closed set we deduce 

1T x

1x T x∈ . 

It results that the conditions of theorem 1 are satisfied and together with lemma 1 results 
theorem 4. 

Theorem 5 (Theorem 3 [4]). Let ( , )X d  be a complete metric space and  a 
multifunction such that the following inequality occurs 

: ( )clbT X P X→

2 2( , ) ( , )( , )
( , ) ( , )

m m
m

m m

d x Tx d y TyH Tx Ty c
x Tx y Tyδ δ

+
≤

+
 

for all x ,  in y X  with . Then T  has a fixed point. ( , ) ( , ) 0m mx Tx y Tyδ δ+ ≠

This theorem results with theorem 4. 
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Theorem 6 (Theorem 5 [4]). Let ( , )X d

)
 be a complete metric space and  a sequence of 

multifunctions  such that the following inequality occurs 
1( )n nT ≥

: (n clbT X P X→

 
2 2

1
1

1

( , ) ( , )( , )
( , ) ( , )

m m
m n

n m m
n

d x T x d y T yH T x T y c
x T x y T yδ δ

+
≤

+
, ( ) 2n∀ ≥  

for all x ,  in y X  which verify the condition 1( , ) ( , ) 0m m
nx T x y T yδ δ+ ≠ , where , 

. 
1m ≥

0 1c< <

Then the sequence  has common fixed points and 1( )n nT ≥ 1( ) ( )nF T F T= , ( ) 2n∀ ≥ . 

This theorem results with theorem 1 and lemma 1. 

Note. In paper [2] fixed point theorems in metric spaces ( , )X d  are given for multifunctions 
, called (d)-contractive, without using the Hausdorff metric, having the property : (T X P X→ )

( )x X∀ ∈ , , there exists ( )y Tx∀ ∈ z Ty∈  such that ( , ) ( , )d y z d x yα≤ , where 0 1α< < . See 
also [3] for related results on common fixed points theorems for (d)-contractive multifunctions. 
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Puncte fixe commune pentru multifuncții care verifică o 
inegalitate polinomială 

Rezumat 

Se dau teoreme de punct fix comun în spații metrice complete ( , )X d  pentru două sau mai multe 
multifuncții care îndeplinesc inegalități polinomiale exprimate numai cu distanța , fără a utiliza 
metrica Hausdorff. 
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